Bicyclic units of $\mathbb {Z} S_n$

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commutativity degree of $mathbb{Z}_p$≀$mathbb{Z}_{p^n}

For a nite group G the commutativity degree denote by d(G) and dend:$$d(G) =frac{|{(x; y)|x, yin G,xy = yx}|}{|G|^2}.$$ In [2] authors found commutativity degree for some groups,in this paper we nd commutativity degree for a class of groups that have high nilpontencies.

متن کامل

units in $mathbb{z}_2(c_2times d_infty)$

in this paper we consider the group algebra $r(c_2times‎ ‎d_infty)$‎. ‎it is shown that $r(c_2times d_infty)$ can be‎ ‎represented by a $4times 4$ block circulant matrix‎. ‎it is also‎ ‎shown that $mathcal{u}(mathbb{z}_2(c_2times d_infty))$ is‎ ‎infinitely generated‎.

متن کامل

$\mathbb{Z}_{q}(\mathbb{Z}_{q}+u\mathbb{Z}_{q})$-Linear Skew Constacyclic Codes

In this paper, we study skew constacyclic codes over the ring ZqR where R = Zq + uZq, q = p s for a prime p and u2 = 0. We give the definition of these codes as subsets of the ring ZqR . Some structural properties of the skew polynomial ring R[x, θ] are discussed, where θ is an automorphism of R. We describe the generator polynomials of skew constacyclic codes over R and ZqR. Using Gray images ...

متن کامل

Self-Dual Codes over $\mathbb{Z}_2\times (\mathbb{Z}_2+u\mathbb{Z}_2)$

In this paper, we study self-dual codes over Z2× (Z2+uZ2), where u 2 = 0. Three types of self-dual codes are defined. For each type, the possible values α, β such that there exists a code C ⊆ Z2×(Z2+uZ2) β are established. We also present several approaches to construct self-dual codes over Z2 × (Z2 + uZ2). Moreover, the structure of two-weight self-dual codes is completely obtained for α · β 6...

متن کامل

On polynomial approximations over $\mathbb{Z}/2^k\mathbb{Z}$

We study approximation of Boolean functions by low-degree polynomials over the ring Z/2kZ. More precisely, given a Boolean function F : {0, 1}n → {0, 1}, define its k-lift to be Fk : {0, 1}n → {0, 2k−1} by Fk(x) = 2k−F(x) (mod 2k). We consider the fractional agreement (which we refer to as γd,k(F)) of Fk with degree d polynomials from Z/2 Z[x1, . . . , xn]. Our results are the following: • Incr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2003

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-03-06839-4